skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brammer, Gabriel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Detecting the first generation of stars, Population III (Pop III), has been a long-standing goal in astrophysics, yet they remain elusive even in the JWST era. Here we present a novel NIRCam-based selection method for Pop III galaxies, and carefully validate it through completeness and contamination simulations. We systematically search ≃ 500 arcmin2across JWST legacy fields for Pop III candidates, including GLIMPSE, which, assisted by gravitational lensing, has produced JWST’s deepest NIRCam imaging thus far. We discover one promising Pop III galaxy candidate (GLIMPSE-16043) at z = 6.5 0 0.24 + 0.03 , a moderately lensed galaxy ( μ = 2 . 9 0.2 + 0.1 ) with an intrinsic UV magnitude of M UV = 15.8 9 0.14 + 0.12 . It exhibits key Pop III features: strong Hαemission (rest-frame EW 2810 ± 550 Å); a Balmer jump; no dust (UV slopeβ = −2.34 ± 0.36); and undetectable metal lines (e.g., [Oiii]; [Oiii]/Hβ < 0.44), implying a gas-phase metallicity ofZgas/Z < 0.5%. These properties indicate the presence of a nascent, metal-deficient young stellar population (<5 Myr) with a stellar mass of ≃105M. Intriguingly, this source deviates significantly from the extrapolated UV–metallicity relation derived from recent JWST observations atz= 4–10, consistent with UV enhancement by a top-heavy Pop III initial mass function or the presence of an extremely metal-poor active galactic nucleus. We also derive the first observational constraints on the Pop III UV luminosity function atz ≃ 6–7. The volume density of GLIMPSE-16043 (≈10−4cMpc−3) is in excellent agreement with theoretical predictions, independently reinforcing its plausibility. This study demonstrates the power of our novel NIRCam method to finally reveal distant galaxies even more pristine than the Milky Way’s most metal-poor satellites, thereby promising to bring us closer to the first generation of stars than we have ever been before. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026
  2. Abstract Theoretical models predict thatz≳ 6 quasars are hosted in the most massive halos of the underlying dark matter distribution and thus would be immersed in protoclusters of galaxies. However, observations report inconclusive results. We investigate the 1.1 proper-Mpc2environment of thez= 7.54 luminous quasar ULAS J1342+0928. We search for Lyman-break galaxy (LBG) candidates using deep imaging from the Hubble Space Telescope (HST) in the Advanced Camera for Surveys (ACS)/F814W, Wide Field Camera 3 (WFC3)/F105W/F125W bands, and Spitzer/Infrared Array Camera at 3.6 and 4.5μm. We report a z phot = 7.69 0.23 + 0.33 LBG with magF125W= 26.41 at 223 projected proper kpc (pkpc) from the quasar. We find no HST counterpart to one [Cii] emitter previously found with the Atacama Large millimeter/submillimeter Array (ALMA) at 27 projected pkpc andz[C II]=7.5341 ± 0.0009 (Venemans et al. 2020). We estimate the completeness of our LBG candidates using results from Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey/GOODS deep blank field searches sharing a similar filter setup. We find that >50% of thez∼ 7.5 Lyman-break galaxies (LBGs) with magF125W> 25.5 are missed due to the absence of a filter redward of the Lyman break in F105W, hindering the UV color accuracy of the candidates. We conduct a QSO-LBG clustering analysis revealing a low LBG excess of 0.46 0.08 + 1.52 in this quasar field, consistent with an average or low-density field. Consequently, this result does not present strong evidence of an LBG overdensity around ULAS J1342+0928. Furthermore, we identify two LBG candidates with azphotmatching a confirmedz= 6.84 absorber along the line of sight to the quasar. All these galaxy candidates are excellent targets for follow-up observations with JWST and/or ALMA to confirm their redshift and physical properties. 
    more » « less
  3. Abstract We present the construction of a deep multiwavelength point-spread-function-matched photometric catalog in the Ultra-Deep Survey (UDS) field following the final UKIDSS UDS release. The catalog includes photometry in 24 filters, from the MegaCam-uS0.38μm band to the Spitzer-IRAC 8μm band, over ∼0.9 deg2and with a 5σdepth of 25.3 AB in theK-band detection image. The catalog, containing ≈188,564 (136,235) galaxies at 0.2 <z< 8.0 with stellar mass log ( M * / M ) > 8 andK-band total magnitudeK< 25.2 (24.3) AB, enables a range of extragalactic studies. We also provide photometric redshifts, corresponding redshift probability distributions, and rest-frame absolute magnitudes and colors derived using the template-fitting codeeazy-py. Photometric redshift errors are less than 3%−4% atz< 4 across the full brightness range in theKband and stellar mass range 8 < log ( M * / M ) < 12 . Stellar population properties (e.g., stellar mass, star formation rate, dust extinction) are derived from the modeling of the spectral energy distributions using the codesFASTand Dense Basis. 
    more » « less
  4. Abstract We present the first results from Chemical Evolution Constrained Using Ionized Lines in Interstellar Aurorae (CECILIA), a Cycle 1 JWST NIRSpec/MSA program that uses ultra-deep ∼30 hr G235M/F170LP observations to target multiple electron temperature-sensitive auroral lines in the spectra of 33 galaxies atz∼ 1–3. Using a subset of 23 galaxies, we construct two ∼600 object-hour composite spectra, both with and without the stellar continuum, and use these to investigate the characteristic rest-optical (λrest≈ 5700–8500 Å) spectrum of star-forming galaxies at the peak epoch of cosmic star formation. Emission lines of eight different elements (H, He, N, O, Si, S, Ar, and Ni) are detected, with most of these features observed to be ≲3% the strength of Hα. We report the characteristic strength of three auroral features ([Nii]λ5756, [Siii]λ6313, and [Oii]λλ7322, 7332), as well as other semi-strong and faint emission lines, including forbidden [Niii]λλ7380, 7414 and permitted Oiλ8449, some of which have never before been observed outside of the local Universe. Using these measurements, we findTe[Nii] = 13,630 ± 2540 K, representing the first measurement of electron temperature using [Nii] in the high-redshift Universe. We also see evidence for broad line emission with a FWHM of 536 167 + 45 km s−1; the broad component of Hαis 6.01%–28.31% the strength of the narrow component and likely arises from star-formation-driven outflows. Finally, we briefly comment on the feasibility of obtaining large samples of faint emission lines using JWST in the future. 
    more » « less
  5. ABSTRACT We report the detection of cold dust in an apparently quiescent massive galaxy (log (M⋆/M⊙) ≈ 11) at z ∼ 2 (G4). The source is identified as a serendipitous 2 mm continuum source in a deep ALMA observation within the field of Q2343-BX610, a z = 2.21 massive star-forming disc galaxy. Available multiband photometry of G4 suggests redshift of z ∼ 2 and a low specific star formation rate (sSFR), log (SFR/M⋆)[yr−1] ≈ −10.2, corresponding to ≈1.2 dex below the z = 2 main sequence (MS). G4 appears to be a peculiar dust-rich quiescent galaxy for its stellar mass (log (Mdust/M⋆) = −2.71 ± 0.26), with its estimated mass-weighted age (∼1–2 Gyr). We compile z ≳ 1 quiescent galaxies in the literature and discuss their age–ΔMS and log (Mdust/M⋆)–age relations to investigate passive evolution and dust depletion scale. A long dust depletion time and its morphology suggest morphological quenching along with less efficient feedback that could have acted on G4. The estimated dust yield for G4 further supports this idea, requiring efficient survival of dust and/or grain growth, and rejuvenation (or additional accretion). Follow-up observations probing the stellar light and cold dust peak are necessary to understand the implication of these findings in the broader context of galaxy evolutionary studies and quenching in the early universe. 
    more » « less
  6. Smith, Keith (Ed.)
    Ultraviolet light from early galaxies is thought to have ionized gas in the intergalactic medium. However, there are few observational constraints on this epoch because of the faintness of those galaxies and the redshift of their optical light into the infrared. We report the observation, in JWST imaging, of a distant galaxy that is magnified by gravitational lensing. JWST spectroscopy of the galaxy, at rest-frame optical wavelengths, detects strong nebular emission lines that are attributable to oxygen and hydrogen. The measured redshift is z= 9.51 ± 0.01, corresponding to 510 million years after the Big Bang. The galaxy has a radius of 16.2-7.2+4.6 parsecs, which is substantially more compact than galaxies with equivalent luminosity at z~ 6 to 8, leading to a high star formation rate surface density. 
    more » « less
  7. Abstract We present spatially resolved Hubble Space Telescope grism spectroscopy of 15 galaxies at z ∼ 0.8 drawn from the DEEP2 survey. We analyze H α +[N ii ], [S ii ], and [S iii ] emission on kiloparsec scales to explore which mechanisms are powering emission lines at high redshifts, testing which processes may be responsible for the well-known offset of high-redshift galaxies from the z ∼ 0 locus in the [O iii ]/H β versus [N ii ]/H α Baldwin—Phillips—Terlevich (BPT) excitation diagram. We study spatially resolved emission-line maps to examine evidence for active galactic nuclei (AGN), shocks, diffuse ionized gas (DIG), or escaping ionizing radiation, all of which may contribute to the BPT offsets observed in our sample. We do not find significant evidence of AGN in our sample and quantify that, on average, AGN would need to contribute ∼25% of the H α flux in the central resolution element in order to cause the observed BPT offsets. We find weak (2 σ ) evidence of DIG emission at low surface brightnesses, yielding an implied total DIG emission fraction of ∼20%, which is not significant enough to be the dominant emission line driver in our sample. In general we find that the observed emission is dominated by star-forming H ii regions. We discuss trends with demographic properties and the possible role of α -enhanced abundance patterns in the emission spectra of high-redshift galaxies. Our results indicate that photoionization modeling with stellar population synthesis inputs is a valid tool to explore the specific star formation properties which may cause BPT offsets, to be explored in future work. 
    more » « less
  8. ABSTRACT We present a detailed study of a galaxy merger taking place at z = 1.89 in the GOODS-S field. Here, we analyse Keck/MOSFIRE spectroscopic observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey along with multiwavelength photometry assembled by the 3D-HST survey. The combined data set is modelled to infer the past star formation histories (SFHs) of both merging galaxies. They are found to be massive, with log10(M*/M⊙) > 11, with a close mass ratio satisfying the typical major-merger definition. Additionally, in the context of delayed-τ models, GOODS-S 43114, and GOODS-S 43683 have similar SFHs and low star formation rates (log10(SFR(SED)/$${\rm M}_{\odot }\,\rm {yr}^{-1}$$) < 1.0) compared to their past averages. The best-fitting model SEDs show elevated H δA values for both galaxies, indicating that their stellar spectra are dominated by A-type stars, and that star formation peaked ∼0.5−1 Gyr ago and has recently declined. Additionally, based on SED fitting both merging galaxies turned on and shut off star formation within a few hundred Myr of each other, suggesting that their bursts of star formation may be linked. Combining the SFHs and H δA results with recent galaxy merger simulations, we infer that these galaxies have recently completed their first pericentric passage and are moving apart. Finally, the relatively low second velocity moment of GOODS-S 43114, given its stellar mass suggests a disc-like structure. However, including the geometry of the galaxy in the modelling does not completely resolve the discrepancy between the dynamical and stellar masses. Future work is needed to resolve this inconsistency in mass. 
    more » « less
  9. Abstract We report on the gas-phase metallicity gradients of a sample of 238 star-forming galaxies at 0.6 < z < 2.6, measured through deep near-infrared Hubble Space Telescope slitless spectroscopy. The observations include 12 orbit depth Hubble/WFC3 G102 grism spectra taken as a part of the CANDELS Ly α Emission at Reionization (CLEAR) survey, and archival WFC3 G102+G141 grism spectra overlapping the CLEAR footprint. The majority of galaxies in this sample are consistent with having a zero or slightly positive metallicity gradient ( dZ / dR ≥ 0, i.e., increasing with radius) across the full mass range probed (8.5 < log M * / M ⊙ < 10.5). We measure the intrinsic population scatter of the metallicity gradients, and show that it increases with decreasing stellar mass—consistent with previous reports in the literature, but confirmed here with a much larger sample. To understand the physical mechanisms governing this scatter, we search for correlations between the observed gradient and various stellar population properties at fixed mass. However, we find no evidence for a correlation with the galaxy properties we consider—including star formation rates, sizes, star formation rate surface densities, and star formation rates per gravitational potential energy. We use the observed weakness of these correlations to provide material constraints for predicted intrinsic correlations from theoretical models. 
    more » « less